1. Warmup: Permanent Income Hypothesis

Solve the deterministic individual problem

\[
\max_{\{c_t, a_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

\[\text{s.t. } c_t + a_{t+1} = y_t + (1 + r)a_t \quad \forall t\]

f.o.n.c.'s are

\[c_t : \quad u'(c_t) = \lambda_t\]

\[a_{t+1} : \quad \lambda_t = \beta(1 + r)\lambda_{t+1}\]

Assuming \(\beta(1 + r) = 1\), we obtain

\[u'(c_t) = u'(c_{t+1})\]

So if \(u(\cdot)\) is strictly concave, \(c_{t+j} = c_t\) for all \(j\). Then writing out the budget constraints,

\[c_t + a_{t+1} = y_t + (1 + r)a_t\]
\[c_t + a_{t+2} = y_{t+1} + (1 + r)a_{t+1}\]
\[c_t + a_{t+3} = y_{t+2} + (1 + r)a_{t+2}\]
\[c_t + a_{t+4} = y_{t+3} + (1 + r)a_{t+3}\]

\[\ldots\]

Multiply iteratively by \(\frac{1}{1+r}\) to get

\[c_t + a_{t+1} = y_t + (1 + r)a_t\]

\[\frac{1}{1+r} c_t + \frac{1}{1+r} a_{t+2} = \frac{1}{1+r} y_{t+1} + a_{t+1}\]
\[
\left(\frac{1}{1+r} \right)^2 c_t + \left(\frac{1}{1+r} \right)^2 a_{t+3} = \left(\frac{1}{1+r} \right)^2 y_{t+2} + \left(\frac{1}{1+r} \right) a_{t+2}
\]
\[
\left(\frac{1}{1+r} \right)^3 c_t + \left(\frac{1}{1+r} \right)^3 a_{t+4} = \left(\frac{1}{1+r} \right)^3 y_{t+3} + \left(\frac{1}{1+r} \right)^2 a_{t+3}
\]
\[\ldots\]

Then adding up LHS’s and RHS’s, all the a’s cancel out, so

\[
\sum_{j=0}^{\infty} \left(\frac{1}{1+r} \right)^j c_t + \lim_{J \to \infty} \left(\frac{1}{1+r} \right)^j a_{t+j+1} = \sum_{j=0}^{\infty} \left(\frac{1}{1+r} \right)^j y_{t+j} + (1+r)a_t
\]

By the TVC or borrowing constraint, the last term of LHS is 0. Hence

\[
\frac{1+r}{r} c_t = \sum_{j=0}^{\infty} \left(\frac{1}{1+r} \right)^j y_{t+j} + (1+r)a_t
\]

So

\[
c_t = \frac{r}{1+r} \cdot \left\{ y_t + \sum_{j=1}^{\infty} \left(\frac{1}{1+r} \right)^j y_{t+j} + (1+r)a_t \right\}.
\]

Friedman’s conjecture is that this holds even in the stochastic case:

\[
c_t = \frac{r}{1+r} \cdot \left\{ y_t + \mathbb{E}_t \sum_{j=1}^{\infty} \left(\frac{1}{1+r} \right)^j y_{t+j} + (1+r)a_t \right\}.
\]

This is called "certainty equivalence," a principle that is exploited in many other applications as well to show that the solution to a stochastic problem coincides with its deterministic counterpart. Of course, it is something that has to be shown case by case, not a universal property.

2. The Income Fluctuation Problem

This is a summary of some important propositions from Huggett (1993); Aiyagari (1993); Chamberlain and Wilson (2000).
2.1 $\beta(1 + r) < 1$ w/o uncertainty

Assume a deterministic income process $\{y_t\}_{t=0}^{\infty}$ s.t. $y_t = \bar{y}$ for all t, i.e., the endowment is same every period. The individual’s problem is

$$\max_{\{c_t, a_{t+1}\}} \sum_{t=0}^{\infty} \beta^t u(c_t),$$

s.t. $c_t + a_{t+1} = \bar{y} + (1+r)a_t$

$a_{t+1} \geq -B \quad \forall t$,

$$\lim_{J \to \infty} \left(\frac{1}{1+r} \right)^J a_{t+J+1} = 0 \quad \text{(TVC)}.$$

where B is an (exogenous) borrowing limit. When the borrowing constraint is not binding, we get the usual Euler Equation

$$u'(c_t) = \beta(1+r)u'(c_{t+1}) < u'(c_{t+1})$$

$$\Rightarrow c_t > c_{t+1}$$

as long as u is concave. So consumption decreases over time. This implies that savings decrease over time as well, because

$$c_{t+1} = \bar{y} + (1+r)a_{t+1} - a_{t+2}, \quad c_t = \bar{y} + (1+r)a_t - a_{t+1}$$

$$\Rightarrow 0 > c_{t+1} - c_t = (1+r)(a_{t+1} - a_t) - (a_{t+2} - a_{t+1})$$

$$\Rightarrow a_{t+2} - a_{t+1} > (1+r)(a_{t+1} - a_t)$$

$$\Rightarrow \left(\frac{1}{1+r} \right) (a_{t+2} - a_{t+1}) > a_{t+1} - a_t.$$

Then iterating forward,

$$0 = \lim_{J \to \infty} \left(\frac{1}{1+r} \right)^J (a_{t+J+1} - a_{t+J}) > a_{t+1} - a_t$$

$$a_t > a_{t+1}.$$
So both consumption and savings decrease; consumption cannot be negative and debt cannot go over the borrowing limit. When the borrowing constraint is binding, then,

\[a_{t+1} = -B \]
\[c_t = \bar{y} - rB. \]

So once you hit the borrowing limit, you cannot borrow anymore, continue to pay the interest to your debt, and consume whatever is left over. So we can define a natural borrowing limit \(B = \frac{\bar{y}}{r} \) which you would never hit (as long as zero consumption is not allowed)—consumption just decreases forever toward zero!

2.2 \(\beta(1 + r) = 1 \) w/ uncertainty: Prudence and Precautionary Savings

Now \(\{y_t\} \) follows a stochastic process with constant mean (i.e., on average the endowment is the same). The Euler equation for the individual is

\[u'(c_t) = \beta (1 + r) \mathbb{E}_t u'(c_{t+1}) \geq u'(\mathbb{E}_t c_{t+1}), \]

If the inequality holds with >, then \(c_t < \mathbb{E}_t c_{t+1} \), so consumption is a submartingale while MU is a supermartingale. By the martingale convergence thm, both \(c_t \) and \(u'(c_t) \) must converge, the question is where. Turns out that \(u'(c_t) \to 0 \) (why?), \(c_t \to \infty \), and \(a_t \to \infty \). (Think about it: If I want to continue to increase consumption, I have to save more every period. We could derived the same using recursive methods, which we’re still abstracting away from for now...)

When do we have \(\mathbb{E}_t u'(c_{t+1}) > u'(\mathbb{E}_t c_{t+1})? \) This holds when \(u' \) is convex. Hence, \(u \) being concave is not enough, or put differently, high risk aversion is not enough even though it may seem like it would. For example, quadratic utility will not achieve this: Suppose \(u(c) = -c^2 \), then \(u'(c) = -2c \), so

\[-2c_t = \mathbb{E}_t [-2c_{t+1}] \]
\[c_t = \mathbb{E}c_{t+1}. \]
and we would get certainty equivalence—i.e., Friedman’s PIH in (1) becomes true, not just a conjecture. What we need is \(u' \) being convex, or, \(u''' > 0 \), which we call prudence. If the utility function displays prudence, the savings behavior displays precautionary savings, so that I save more than I would without uncertainty (certainty equivalence does not hold). In fact, this is how Friedman’s PIH was disproved.

2.3 \(\beta(1 + r) < 1 \) w/ uncertainty

This is the most important case. Suppose that the endowment process is Markov, i.e., that \(y' \sim F(y'|y) \). To make things simpler, suppose that \(y \) can only take on a \(n \) number of values, so that the Markov process can be expressed as a transition matrix \(\Pi_{n \times n} \): Each element tells you the probability that the next period endowment is \(y_j \) if the current period endowment is \(y_i \). The savings problem, now in recursive form, is

\[
v(a, y_i) = \max_{a' \geq -B} \left\{ u(c) + \beta \mathbb{E}_{y_i} v(a', y_j) \right\} \quad \text{s.t.} \quad c + a' \leq y_i + (1 + r)a
\]

\[
= \max_{a' \geq -B} \left\{ u((1 + r)a + y_i - a') + \beta \sum_{j=1}^{n} \pi_{i,j} v(a', y_j) \right\}
\]

where I have just replaced \(c \) in the period utility function and explicitly expressed the expectation. Now, let us redefine some variables as follows. Let

\[
A = a + B
\]

\[
Z = (1 + r)a + B + y_i = (1 + r)A + y_i - rB,
\]

so then we can write

\[
V(Z, y_i) = \max_{A' \geq 0} \left\{ u(Z - A') + \beta \sum_{j} \pi_{i,j} V((1 + r)A' + y_j - rB, y_j) \right\}.
\]

(2)

Note that we only need to keep \(y_i \) in today’s state and \(y_j \) in tomorrow’s state because it is needed to know which elements of \(\pi_{i,j} \) we should sum over in the expectation. Other than that, it no longer contains any relevant information about how much wealth I have today and how much I can borrow/save; it is all compressed into \((A, Z) \). Here, \(Z \) is “cash-at-hand” or liquidity: It is the total amount I can eat taking into consideration how much I can borrow. \(A \)
is “net investment”: How much I can set aside for tomorrow.

We can now prove an important result:

Theorem 1 Assets are bounded above if absolute risk aversion converges to 0, i.e.

\[\lim_{c \to \infty} \frac{u''(c)}{u'(c)} = 0. \]

Proof: We can rewrite (2) as

\[
V(Z) = \max_{c,A' \in [0,Z]} \{ u(c) + \beta \mathbb{E} V[(1 + r)A' + y' - rB] \} \quad \text{s.t.} \quad c + A' \leq Z.
\]

where \(c(Z), A'(Z) \) are the optimal allocations for the second maximization problem in (2). Assume \(u \) and \(V \) are strictly increasing, concave and differentiable. Then (2) can be viewed as a standard 2-good utility maximization problem where \(Z \) is your budget, and \(c \) and \(A' \) are normal goods. Hence the optimal solutions \(c(Z) \) and \(A'(Z) \) are both (strictly) increasing in \(Z \).

Now we need

Lemma 1 \(\exists Z^* \) s.t. for all \(Z \geq Z^* \), \(Z' \leq Z'_{\text{max}} = (1 + r)A'(Z) + y_{\text{max}} - rB \leq Z \), where \(y_{\text{max}} \) is the highest possible realization of income.

Intuitively, the meaning of the claim is this: Suppose my cash-at-hand exceeds \(Z^* \) today. Then even if I get the highest possible income shock, I will decrease my cash-at-hand tomorrow. Similarly we can define \(Z'_{\text{min}} = (1 + r)A'(Z) + y_{\text{min}} - rB \).

Proof: The Euler equation for \(V \) is

\[
u'(c(Z)) = \beta (1 + r) \mathbb{E} u'(c(Z'))
\]

\[
= \beta (1 + r) \frac{\mathbb{E} u'(c(Z'))}{u'(c(Z'_{\text{max}}))} u'(c(Z'_{\text{max}})) < \frac{\mathbb{E} u'(c(Z'))}{u'(c(Z'_{\text{max}}))} u'(c(Z'_{\text{max}})).
\]

\[1\text{See Appendix for proof.}\]
As \(Z \to \infty \), \(A'(Z) \to \infty \) since \(A'(Z) \) is increasing in \(Z \), so \(Z_{\text{max}}' \to \infty \). If we can show that

\[
\frac{E u'(c(Z'))}{u'(c(Z'_{\text{max}}))} \to 1 \text{ as } Z'_{\text{max}} \to \infty
\]

we are done, since then

\[
\lim_{Z \to \infty} u'(c(Z)) \leq \lim_{Z \to \infty} u'(c(Z'_{\text{max}}))
\]

so that for some \(Z^* \) large enough,

\[
u'(c(Z)) \leq u'(c(Z'_{\text{max}})) \iff c(Z) \geq c(Z'_{\text{max}}) \iff Z \geq Z'_{\text{max}} \geq Z'
\]

for all \(Z \geq Z^* \), as desired. Now

\[
1 \leq \frac{E u'(c(Z'))}{u'(c(Z'_{\text{max}}))} \leq \frac{u'(c(Z'_{\text{max}}))}{u'(c(Z'_{\text{max}}))} \leq \frac{u'(c(Z'_{\text{max}}) - (Z'_{\text{max}} - Z'_{\text{min}}))}{u'(c(Z'_{\text{max}}))},
\]

the last inequality since \(c(Z'_{\text{max}}) - c(Z'_{\text{min}}) \leq Z'_{\text{max}} - Z'_{\text{min}} \) and both \(c \) and \(A' \) are increasing in \(Z \). Then

\[
1 \leq \frac{u'(c(Z'_{\text{max}}) - (Z'_{\text{max}} - Z'_{\text{min}}))}{u'(c(Z'_{\text{max}}))} = 1 + \int_0^{Z'_{\text{max}} - Z'_{\text{min}}} \left[\frac{u''(c(Z'_{\text{max}}) - z)}{u'(c(Z'_{\text{max}}))} \right] dz
\]

\[
= 1 + \int_0^{Z'_{\text{max}} - Z'_{\text{min}}} \left[\frac{u'(c(Z'_{\text{max}}) - z)}{u'(c(Z'_{\text{max}}))} \cdot \frac{u''(c(Z'_{\text{max}}) - z)}{u'(c(Z'_{\text{max}}) - z))} \right] dz
\]

\[
\to 1
\]

by the assumption \(\lim_{c \to \infty} \frac{u''(c)}{u'(c)} = 0 \).

Q.E.D.
Appendices

Solve

\[
\max_{c,a} u(c) + v(a)
\]
\[
\text{s.t. } c + a \leq W.
\]

Now suppose \(u\) and \(v\) are strictly increasing, concave and differentiable. Attaching the Lagrangian multiplier \(\lambda\) to the constraint, we obtain the f.o.c.’s:

\[
u'(c^*) = v'(a^*) = \lambda,
\]

so \(c^* = f(\lambda)\) and \(a^* = g(\lambda)\) where both \(f\) and \(g\) are decreasing. Plugging this into the budget constraint, we find that \(h(\lambda) = W\), where \(h\) is decreasing. Hence if \(W\) increases, \(\lambda\) decreases, and both \(c^*\) and \(a^*\) increase.

References

